

Laurie Kovalenko
Nathaniel Livesey
Ross Salawitch
Joe Waters
Jet Propulsion Laboratory, California Institute of Technology

MLS BrO

MLS BrO signal is weak

S/N = 0.05

Three retrieval products developed so far

1. V 1.5

- Problems
 - Large oscillations with altitude
 - Large biases at low altitude
- Poor tradeoff between precision and vertical resolution
- Not useful for scientific studies

2. Interim version: BinRad

- Zonal mean average of radiances
- Better tradeoff between precision and vertical resolution
- Successfully used in scientific study

3. V 2.1

- Only a few days available
- So far looks better than V 1.5 but not as good as BinRad

Minimizing biases in MLS BrO Signal

- Models predict a large diurnal variation for BrO
 - For altitudes up to about 4.6 hPa (38 km), nighttime BrO is negligible

 Therefore we approximate daytime BrO as the day/night difference

Three Versions of MLS BrO

Three Versions of MLS BrO

Validation of MLS BrO

- 1. Balloon-borne DOAS
 - One successful flight since MLS launch: June 17, 2005
 - Data not yet publicly available
- 2. Balloon-borne SAOZ
 - One successful flights since MLS launch: August 24
 - Data not yet publicly available
- 3. Satellite-borne SCIAMACHY
 - Has been collecting data since 2002
 - The results from two retrieval groups are inconsistent; thus we do not consider here

Preliminary DOAS data

- Difference in local time between DOAS and MLS measurements has negligible effect on BrO
- Inferred Br_v ~ 21.5 ± 6 ppt
 - in agreement with DOAS team estimate of 21.5 \pm 2.8 ppt, with Br_v^{trop} = 3.5 to 5 ppt
 - Recall Br_v inferred from MLS BrO: 18.6 ± 5.5 ppt

Compare MLS data with preliminary DOAS data

DOAS flight June 17, 2005 Latitude=5S

- MLS monthly zonal mean for 5S to 5N
- MLS and DOAS BrO and Br_v agree within uncertainty

Preliminary SAOZ data

SAOZ flight August 25, 2004 Latitude=52N

- Difference in local time between SAOZ and MLS measurements has an effect on BrO
- Inferred Br_y \sim 16 30 ppt
 - Recall Br_y inferred from MLS BrO: 18.6 ppt

Compare MLS data with preliminary SAOZ data

- MLS monthly zonal mean for September 2004 45N to 55N
- MLS and SAOZ BrO agree within uncertainty

Inferring Br_v from MLS BrO (BinRad Version) using models

Livesey et al., GRL (in press)

Two methods

SLIMCAT

$$[Br_y]_{MLS} = BrO_{MLS} \times [Br_y/BrO]_{Slimcat}$$

- Photochemical Steady State Box Model (PSS)
 - Model constrained to MLS measurements of BrO, O₃, H₂O, and N₂O
- Resulting Br_y: (JPL02 kinetics with BrONO₂+O reaction)
 - Br_y SLIMCAT = 20.7 ppt
 - Br_y = 18.6 ± 5.5 ppt
- Advantage of PSS model
 - O_3 and NO_2

Future Work

Version 2.1

 Once we have more days we will compare with SLIMCAT, DOAS, and SAOZ, as well as with SCIA (when the two retrievals have converged)

OMI BrO Column

– Is the contribution of upper stratospheric BrO to total column BrO large enough to make this meaningful?

Upper stratosphere improvement

 Extend use of day/night differences to higher altitudes using photochemical model to compensate for non-zero nighttime BrO

Possible anomaly in polar BrO

MLS measurements show higher BrO than expected - need to look into this